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We investigate the gravitational and electromagnetic fields on the generalized 
Lagrange space endowed with the metric gu(x, y) = go(x) + {1 + 1/n2(x, y)}ycvj. 
The generalized Lagrange spaces M m do not reduce to Lagrange spaces. Conse- 
quently, they cannot be studied by methods of symplectic geometry. The restric- 
tion of the spaces M m to a section So(M) leads to the Maxwell equations and 
Einstein equations for the electromagnetic and gravitational fields in dispersive 
media with the refractive index n(x, V) endowed with the Synge metric. When 
n(x, V)= 1 we have the classical Einstein equations. If 1/n 2= 1-  1/c 2 (c being 
the light velocity), we get results given previously by the authors. The present 
paper is a detailed version of a work in preparation. 

I N T R O D U C T I O N  

In  two recent papers (Kawaguchi  and  Miron ,  1989a,b), we studied some 
geometrical models for gravi ta t ion and  electromagnet ism considering the 
generalized Lagrange spaces M "  = (M,  go(x, y ) )  in which M is an  m-dimen-  
sional mani fo ld  and  go(x, y)  is the metric tensor 

gis(x, y) = 7u(x) + ~ y,Ys, yi = ~u(x)y j (a) 

yi is the Liouville vector field on  the total  space T M  of  the tangent  bundle  
( T M ,  lr, M ) ,  and  7zij(x) is a R i e m a n n i a n  metric on M. 

Assuming  that  on M there exists a C~~ field Vi(x),  x e M ,  we can 
consider the cross section Sv: M--* T M  of  the project ion re: T M  ~ M,  given 
by 

x i= xi yi= Vi(x),  x ~ M  ( i =  1 . . . . .  m) 
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Then the restriction of the metric (a) to the cross section Sv (M)  leads 
to the metric 

gij(X, V (x ) )  : )/ij(x) ~- 1 e5 ViVj (a') 

The metric was studied by Beil (1987, 1989) and used in some problems 
from electrodynamics. It is related to a new class of Finsler metric (Beil, 
1989). 

Therefore, our works (Kawaguchi and Miron, 1989a,b; Miron and 
Kawaguchi, 1991a,b) give geometrical models for gravitational and electro- 
magnetic fields based on the metric (a). 

R. G. Beil (private communication, October 1989) has pointed out the 
more general metric 

( go{x, V(x)) = 7ij(x) + 1 n2(x ' Y) 

where n(x, V(x)), x e M ,  is the index of refraction of the medium. 
The metric (a') appears as a particular case of the metric (b) : 1/n 2 = 

1 - 1/c2. This metric is discussed extensively by Synge (1968, pp. 376, 384), 
where its application to the propagation of electromagnetic waves in a 
medium with the index of refraction n is established. 

Remarking that the metric (b) is the restriction to the cross section 
Sv(M)  of the d-tensor field 

1 , 

gu(x ,y )=yo(x)+(1  n2(x ' y) )yy j  (I) 

we will study in the present paper the generalized Lagrange space M m= 
(M, go(x, y)) with the fundamental tensor (I) (which explains the title of 
this paper). 

We prove that M "  is not reduced to a Finslerian or a Lagrangian space 
(Miron and Anastasiei, 1987). It is a generalized Lagrange space, a notation 
studied by Miron (1985) and extensively presented in Miron and Anastasiei 
(1987). The generalized Lagrange spaces were also studied by Aringazin and 
Asanov (1985), Asanov (1985), Aikou and Hashiguchi (1984), Anastasiei 
(1981), Atanasiu (1984), Hashiguchi (1984), Ichiyo (1988), Izumi (1987), 
Kawaguchi and Miron (1989a,b), Kikuchi (1988), Klepp (1982), Opris 
(1980), Rund (1982), Sakaguchi (1988), and Watanabe et al. (1983). 

In the following we study the generalized Lagrange spaces M m with the 
metric (I), we find the canonical nonlinear connection determined by the 
metric g~j(x, y), and we prove Synge's theorem (Theorem 3.1). Then we 
determine the canonical metrical d-connection of M m, and its curvatures and 
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torsions. The h- and v-electromagnetic tensors Fo and f~ are determined by 
means of the deflection tensors of the space. Theorem 5.2 gives us the 
Maxwell equations for F U andJ~j. For the nondispersive media (in which On~ 
Oyi= 0), the v-electromagnetic tensorfj(x, y) vanishes and we have a simpler 
form (5.8) for the Maxwell equations. 

If we consider the canonical metrical d-connection LF(N)=  (Lja, Cja) 
as the deformation (6.1) of the d-connection L [ ' ( N ) -  i - ({ jk},  i Cjk), we can 
express the geometrical objects of LF(N) as functions of the corresponding 
geometrical objects of Lf ' (N) .  This idea allows us to give the explicit Einstein 
equations of the generalized Lagrange spaces endowed with the metric (I) 
(Section 7). Finally, in Section 8, we display the almost Hermitian model 
H 2m of the generalized Lagrange space M m, which shows that the methods 
of symplectic geometry used in the theoretical mechanics cannot be applied 
for the study of the geometrical theory of the generalized Lagrange spaces 
M "  endowed with the metric (of the Synge type) (I). 

The restriction of this theory to the cross section Sv(M)  gives us a 
theory of gravitation and electromagnetism for dispersive media with refrac- 
tive index n(x, V(x)) endowed with the Synge metric (b). When n(x, V(x)) = 
1 we have the classical Einstein equations and when 1/n 2= 1 - 1/C 2 we have 
the theory of gravitation and electromagnetism for spaces with the Bell 
metric (a') (Kawaguchi and Miron, 1989a,b). 

1. THE SYNGE METRIC 

Let M be a (C ~ -  m)-dimensional real manifold (in particular m = 4), 
r c : T M ~  M the tangent bundle of M, and (x i, yi) (i,j, k . . . .  = 1 . . . . .  m) 
the local coordinates on the total space TM. A transformation of coordinates 
(x, y) ~ (2, y) has the form 

~i  -~- 2 i ( x  1 . . . . .  x m ) ,  

-i 02i j 
Y =~xjY  

rank 62' 
Ox j = m 

(1.1) 

Suppose that ?,0.(x), x~M,  is a pseudo-Riemannian metric on the base 
manifold M. Then for a point OeTM, with re07) =x, ),0(~r(~)) gives us a d- 
tensor field on TM, symmetric, covariant of order two, and of rank m. 

Also, yi O/Ox ~ is a vector field on TM, called the Liouville vector field. 
Therefore 

Yi = 7o(x)Y (1.2) 

is a d-covector field on TM. 
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W e  denote 

flY I[ 2 = ?,(x)yiyj (1.3) 

and consider the differentiable manifold TM= TM~{0}, where {0} is the 
null section of the projection zr : TM ~ M. 

Consequently, ]IYI[ 2 •0 on TM. 
Assume that there is given a positive function n(x, y) on TM and we 

take 

1 
u(x, y) = - -  (1.4) 

n(x, y) 

The function n(x, y) is called the refractive index. 
We denote 

I 1 l a(x , y )= l+  1 nZ(x 'y) IlyII2 (1.4') 

Now we consider 

g~(x, y) = ?/ij(x) + [1 - u2(x, Y)]YiYj (1.5) 

We have the following result. 

Theorem 1.1. The following propertie_ss hold: 
1. go(x, y) is a d-tensor field on TM, covariant of order two, and 

symmetric. 
2. rank Ilgdx, y)II = m 

Proof The first part of the theorem is immediate. For the second part, 
let us consider the d-tensor field 

giJ(x ' Y) = )/iJ(x ) - -1  ( 1  - -  u2)yiy j (1.6) 
a 

It is easy to check that 

gu(x, y)gJk(x, y) = ~i k (1.7) 

and the theorem is proved, [] 

Obviously, the refractive index n(x, y) enters in the expression of the d- 
tensor field g~(x, y). 

Corollary 1.1. The pair M m= (M, ga(x, y)) is a generalized Lagrange 
space. 

ga(x, y) is called the fundamental tensor or metric tensor of the gen- 
eralized Lagrange space M m. 
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Corollary 1.2: 
1. n(x, y)=  1 implies that M m coincides with the Riemannian space 

V ' =  (M, yu(x)). 
2. 1/n z= 1 -  l / e  2 implies that g~j(x,y) is reduced to the metric 

y~(x) + (1/c2)yyi. 

Remark. The metric from the Corollary 1.2, part 2 is considered in 
Kawaguchi and Miron (1988a,b) and Miron and Kawaguchi (1991a,b) and 
was suggested by the Beil metric (a'). We apply in the study of the generalized 
Lagrange spaces M m endowed with the metric (1.5) the same methods used 
in the above papers. 

We assume that on the manifold M there is a C ~ nonnull vector field 
Vi(x), x~M. In this case, we have the following result. 

Proposition 1.1. The mapping Sv: M ~ TM, given by 

x~=x ~, j =  Vi(x), x e M  (i = 1 . . . . .  m) (1.8) 

is a cross section of the projection z:  TM--+ M. 
Therefore Sv(M) is an immersed submanifold in TM. It is called the 

section Sv(M). 
The restriction to the section Sv(M) of the fundamental tensor 

gu(x, go(x, y)) of the generalized Lagrange space M m is the tensor field 
go(x, V(x)) given by 

/ 
gij(x, V(x)) = yi/(x) + ~1 

Vi(x) = ~,~j(x) W(x)  

n2(x,l(x))) Vy/  
(1.9) 

This is just the metric given by Synge (1966) and used in the study of the 
propagation of electromagnetic waves in a medium with index of refraction 
n(x, V(x)), Vi(x) being the velocity field of the medium. 

Definition 1.1. The medium J/g = [M, V(x), n(x, V(x))] is called a dis- 
persive medium. 

If 8n/Sy i= O, then ~ '  is called a nondispersive medium. 

Definition 1.2. The restriction of the generalized Lagrange space M" to 
the section Sv(M) is called the geometrical model of the dispersive medium 
Jg endowed with the Synge metric (1.9). 

For this reason the geometrical theory of the generalized Lagrange 
space M m is considered by us as the relativistic geometrical optics of the 
medium ~ .  Therefore, we study geometrical properties of the space M" 
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and consider the restriction to the section S v ( M )  in order to obtain the 
geometrical properties of the medium ~ .  

. v - C A N O N I C A L  M E T R I C A L  d - C O N N E C T I O N  

The vertical part of a d-connection, metrical with respect to the tensor 
metric gu(x,  y ) ,  is given by the d-tensor field 

i _ �89 _ ~kg+h - C j k  - ~ h g j ~ , )  

where we s e t  ~ i :  ~ / ~ y i .  

By means of (1.5) we have 

~k g,7 = [( 1 -- U=) (yikyj + ~'jkY,) -- 2U~kuygyj ] 

Then, putting 

Cok = (1 - u2) rikyj, ~j~ =gih~hk 

1 

Cisk = - u( y , y j ~ u  + yjYk~iU -- YkYi~jU) 

we get the following result. 

Theorem 2.1. 
by 

(2.1) 

(2.2) 

(2.3) 

where 

The v-canonical metrical d-connection C'jk(x, y )  is given 

i _ _  ' 1 . 

Csk + Cj.~ (2.4) C ) k - -  ~ t 

Then (2.4) and (2.4') hold. �9 

Proposi t ion 2.1. The medium Jg is nondispersive if and only if the al- 
l . 

tensor field C}k vanishes. 

,y 1 i j _  (2.5) g Y J = - Y ,  goY - a y i  
a 

1 

gjh Ci~ = C~k + Cuk 

However, we have 

P r o o f  A straightforward calculation leads to 

o i 1 1 1 
- - u ) YjkY, t~jk-- g t~jhk C j k - -  ( 1  2 i *-~i__ ihf~ (2.4') 
a 
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The vertical part C}k of a d-connection allows us to consider the v- 
covariant derivative of  the d-tensor fields. For  example, in the case of the d- 
tensor field K~.(x, y) the v-covariant derivative is 

K~lh = ~hK~ § C~hK;-  C~hK~ 

As an application we note 

g#Ik =0,  IlYlt 2tk= 2yk 
i h i yih~ = dik = 5k + y Chk 

the v-deflection tensor of the Here dik is 
space M m. 

Also we get 

(2.6) 

generalized Lagrange 

aL~ = 2[(1 - H2)yk - -  U IlY tl 2&u] (2.6') 

Definition 2.1. The generalized Lagrange space M m is called reducible 
to a Lagrange space if there exists a function L: T M - + R ,  of the class C ~ 
on TM, continuous on the null section, such that 

1 82L 
gi](x, y) - (*) 

It is interesting to note the following result. 

Theorem 2.2. The generalized Lagrange space M "  with the metric (1.5) 
and n(x, y) # 1 is not reduced to a Lagrange space. 

Proof  Let us suppose that there exists a Lagrangian L: T M  ~ R which 
is a solution of the equation with partial derivatives (*). It follows that 
the d-tensor field ~kgv from (2.2) is totally symmetric. But the equations 
~kgo-  ~igkj = 0 imply 

(1 - u z) ( ?'jkyi - YjiY~) - 2uyj( yi~ku - yk~iu) = 0 

Contracting by y J, we obtain yi~ku-y~{~u = 0 and YjkY~-7/yyk = O. A new 
contraction by y/~ in the last equation gives ( m - 1 ) y i = O  or y~=O on TM. 
This is a contradiction. �9 

3. T HE  N O N L I N E A R  C O N N E C T I O N  D E T E R M I N E D  BY go 

The fundamental tensor field go(x, y) from (1.5) of the generalized Lag- 
range space M "  is well determined by the pseudo-Riemannian metric )'ij(x) 
and the refractive index n(x, y). Therefore we can assume the following: 
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Postulate. The functions 

N j= jk  y (3.1) 

are the coefficients of the canonical nonlinear connection of the generalized 
Lagrange space M m. 

Of course {j~,} are the Christoffel symbols of the metric 7u(x). The 
arguments which support this postulate are: 

1. The horizontal geodesics of the nonlinear connection N with the 
coefficients (3.1) are given by 

- -  - - = 0  ( 3 . 2 )  
dt 2 jk dt dt 

2. We have the following very interesting result of Synge (1966). 

Theorem 3.1. (J. L. Synge). For a nondispersive medium the extremals 
of the integral of action on a curve c: [0, 1] ~ M, 

I(c) = 8 x, dt, 8(x, y) =go(x, y)yiyj (3.3) 

which have the property 

- - = 0  (3.4) 
g,j dt 

are the geodesics of the pseudo-Riemannian space V '~= (M, ~'u(x)). 

Proof The extremals of I(e) are given by the Euler-Lagrange equations 

d (ON] ON_O yi=dx i (3.5) 

But, in the hypothesis (3.4) and by On/@i=O the system of equations 
(3.5) leads to (3.2). �9 

3. In the case 1In z= 1 -  I/c 2 the canonical nonlinear connection N 
(Kawaguchi and Miron, 1989a,b) of M m is just (3.1). 

Now we put 

g J ~3 (or~.  = ~ 6  r 0 ) (3.6) ~x i - a x  i N i ay ~ , 3x i, ~x i 

We have (&, ~) a local basis of the module of vector fields Y'(TM) adapted 
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to the horizontal distribution N determined by the nonlinear connection 
(3.1) and to the vertical distribution V on TM. 

Proposition 3.1. The Berwald connection determined by the nonlinear 
connection (3.1) has the coefficients BF=  i k o). 

Proposition 3.2. The horizontal curves c: I c  R ~ T M  are characterized 
by the differential equations 

xi=xi(t) ' dyi+ f i ] j d x  k 
d t  ~ jk;  y -dr : 0 '  t e l  

Proposition 3.3. The horizontal distribution N determined by the non- 
linear connection (3.1) is integrable if and only if the Riemannian manifold 
V m is flat. 

4. THE CANONICAL METRICAL d-CONNECTION 

Now we can determine the horizontal part of the canonical metrical d- 
connection, which depends only on the fundamental tensor field gij(x, y) 
from (1.5). So we have some general results: 

Theorem 4.1 (R. Miron). There exists a unique d-connection 
LF = i i (N j, Lj.~, Cj~) for which: 

1. N)  is given by (3.1). 
2. gijlk = O, g~jlk = O. 

3. The torsions T~k and S~k of LF vanish. 

Theorem 4.2. The d-connection LF which has the properties 1-3 from 
the last theorem has the coefficients N~, Cjk given by (3.1), (2.4), and (2.4') 
and L~k given by the "generalized Christoffel symbols": 

(4.1) 

Clearly, the d-connection LF has the coefficients N(j, D}k, and C}k con- 
structed from the fundamental tensor go(x, y) alone. For this reason it is 
called the canonical metrical d-connection of the generalized Lagrange space 
M m. We denote also LF by LF(N)=  (L}k, Cj~), N being given by (3.1). 

The coefficients L~(x, y) from (4.1) give the horizontal part (h-part) 
of LF(N). 
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Proposi t ion 4.1. The coefficients of the h-part of the canonical metrical 
d-connection LF(N)  are symmetric and can be put in the following form: 

L jk=I  {l+A}k (4.2) 
L j k )  

where 

A~k = -- ugih( yhYj~l~U + yhYk~jU -- y j y ~ h U )  (4.2') 

Proposi t ion 4.2. For a nondispersive medium d / t h e  d-tensor field A)k 
vanishes if and only if the refractive index n (x )  is constant. 

P r o o f  The d-tensor A)~ vanishes if and only if 6ku = Qku = 0. Then 
n(x )  =const  and conversely. 

The h-part of the canonical metrical d-connection LF(N)  allows one 
to construct an h-covariant derivative (Miron and Anastasiei, 1987). For 
example, in the case of a d-tensor field K}(x,  y)  we have the h-covariant 
derivative with respect to LF(N) :  

Kjlh= fihK~ + i r ~ , L r h K S -  L~hK~ �9 

Proposi t ion 4.3. The Ricci identities for a d-tensor field K)(x ,  y )  with 
respect to the canonical metrical d-connec t ion  LF(N)  are given by 

KjlhI~ -- K~.l~lh = g } R s i h k  - K~R/hk  - K}[~RSh~ 

K}lhlk -- Kg[kth = KgPsihk -- KisPjShk - Kj'l~CShk - Kj'[sPShk (4.3) 

K}lhlk -- Kj[~lh = K}Sjh~ - K ~ S f  h~ 

where 

i _ f ikN)-  i R jk - -  fijN ~, 

are the torsions and 

' - ' ( 4 . 4 )  P jk -- dkNS- -  L~j 

R/,,k = a,,L~,, - ahL)~ + L;,~L~k - L;,~L~,~ + C;rRr,,~ 

P/hk = cS~Lj~, - Cjkl,,, + C}rP",',~ (4.5) 

s/,,~ = & c ~ -  ~ c ~  + c ~ , , c ~ -  c;~c~,, 

are the curvatures of s  
Applying the Ricci identities to the fundamental tensor go(x,  y )  from 

(1.5), taking into account g,jjk=0 and g0l~=0, and denoting as usual 
R,jhk = g ) R [ h k ,  etc., we have the following result. 
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Proposition 4.4, The curvature tensors of the canonical metrical d-con- 
nection LF(N) have the properties 

Ri jhk  + R j ihk  = O, P i jhk  + Pj ihk  = 0 

Sijhk + Sjihk = 0 (4.6) 

Let us consider the h-deflection tensor field 

i _ _  i D j -  y ti (4.7) 

By means of h- and v-deflection tensors D~ and d~ we can consider their 
covariant forms D~ and d U given by D~=girD)  and cl,.j=g~d). 

Applying the Ricci identities to the Liouville vector field yi, we have the 
following result. 

Proposition 4.5. The h- and v-covariant deflection tensors D U and d~j of 
the canonical metrical d-connection LF(N) satisfy the equations 

- -  r Dijl~ - D i k l j  - -  RoijkR jk 
_ r r Dijlk -- diklj -- Pooh -- DirCjk - dirP j~ (4.8) 

doik-- dik]j= Sook 

where by the index "0" we denote the contraction by yg, i.e., Ro~k=y~Rr~k, 
etc. 

5. E L E C T R O M A G N E T I C  T E N S O R S  

In the case when the medium Jg is nondispersive we find an electromag- 
netic tensor field given by the skew-symmetric part of the h-covariant deflec- 
tion tensor D,j. In this case the skew-symmetric part of the v-covariant 
deflection tensor d~ vanishes. 

Generally, when the considered medium ~ is dispersive two electro- 
magnetic tensors appear in the generalized Lagrange space M m. 

Definition 5.1. We call the h- and v-electromagnetic tensor fields of the 
generalized Lagrange space M '~ the d-tensors 

F/j 
1 i 

2(Du-Dj i ) ,  f j =  ~_(d~-4i) (5.1) 

respectively. 
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We have the following result. 

Theorem 5.1. The h- and v-electromagnetic tensors of the space M m 
have the form 

F~j= ullyll 2( yjfi~u - y~fiju) 
(5.2) 

f , j= ullylt ~( yjc~u- y,c~ju) 

P r o o f  The formulas 
i - -  i i _ _  i r D j -  L0j- N j -  A0j, D U = g~,Aoj (5.3) 

- -  r 

d~ = ~fi + C~oj, do.- g~ + girCoj (5.3') 

lead to (5.2). ! 

Corollary 5.1. If ~//{ is a nondispersive medium, then the v-electromag- 
netic tensors field f j ( x ,  y)  vanishes. 

These two electromagnetic tensors Fu(x, y )  and f j ( x ,  y)  are related by 
fundamental equations given by the following theorem. 

Theorem 5.2. The h- and v-electromagnetic tensors Fo.(x, y)  andfT(x, y) 
satisfy the Maxwell equations 

+ l 
Folk + Fjkfi F~i~j~ ~ (Roej~ - di~R%) 

qk 

f f  ij[k Jr- Fjkli-I- El<i[] = -- ( fijlk -'}- fjlcli + fkilj) (5.4) 

f,  jl~ +9%1, +A,Ij = 0 

The first of equations (5.4) is obtained from equations (4.8) by Proof. 
a cyclic permutation of the indices i, j, k and summing up. The second of 
equations (5.4) is a consequence of the last equality (4.8), taking into account 
one of the Bianchi identities satisfied by the canonical metrical d-connection 
LF(N):  ~ k  Shuk=0. Now, by means of the relations Cr and P % =  
Pikj the second of equations (4.8) gives 

(Folk + Fjkli + F~,Ij) + ( fjjl< + f j~  +Ai~j) 
I 

- ~ ~ (Po~k-  Poj,k) ijk 

However, we have another Bianchi identity (Miron and Anastasiei, 1987): 

Pj~k - Pkh~j = P % j -  P~o'Ik + P~rkCr~J -- Pt'rJCr,k 

which lead to ~uk (Poijk- P0j~k)= 0. Therefore relations (5.4) hold. �9 

It is convenient to give a new form to the second member of the first 
of equations (5.4). 
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L e m m a  5.1. The canonical metrical d-connection LF(N)  satisfies the 
identity 

( Ro i j k  - -  d i r R r j k )  = - -  ~ [ ( Cior -]- d,r)R~.k] (5.5) 
ijk ijk 

Proof. The Bianchi identity from LF(N) ,  

R~hjk = ~ CihrRjk 
ijk ijk 

gives 

such that (5.5) is satisfied. 
Denoting by r/hg(X) 

nection {j~}, 

R o ~ k  = - ~ C~orR)k 
Uk ijk 

the curvature tensor of the Levi-Civita con- 

we have the following result. 

L e m m a  5.2. The equality 

(5.6) 

Rhu=roh~ (5.7) 

holds. 
Indeed, (4.4) and (3.1) imply (5.7). 

Corollary 5.2. The first of equations (5.4) is equivalent to 

] s Fu,~ + ~ l i +  Fki,j = - ~_ ~ [(Cio~+dis)ro jk] 
Uk 

Now we can prove an important result: 

(5.4') 

Fulk + F:kl: + Fk~l: = 0 
(5.8) 

F &  + F:kl, + Fk,~ = 0 

Theorem 5.3. If the medium Jg is nondispersive, then the Maxwell 
equations of the generalized Lagrange space M m have the form 
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Proof For the nondispersive medium ~ / t h e  v-electromagnetic tensor 
fieldf~j(x, y) vanishes. Then the Maxwell equations (5.4), (5.4') give 

I s 
F, jtk = - _~ | [(C,'o,+ 4s)ro jk] 

~k ~k 

- - 2  ay" ~ r~a~+2(l -u2)yPy q ~ yirpqjk =0 
ijk ~jk 

and 

~ F~I~=0 �9 
ijk 

Remarks. There exist other particularly interesting cases: 

1. The Riemannian space V m is flat. 
2. The generalized Lagrange space M m is a locally Minkowski space. 

6. REMARKABLE T R A N S F O R M A T I O N  OF C O N N E C T I O N S  

The direct study of  the canonical metrical d-connection LF(N)  is very 
difficult. Considering LF(N)  as a deformation of the d-connection 

1 . 

L[ ' (N)  = ({}k}, Cj~), with the tensors of deformation (Ajk, C~k), we have the 
transformation of d-connections L ~ ( N )  ~ LF(N)  given by 

- I  i l  i l i 
C~k- C)k + Cj~ (6.1) L S k _  q _ A y k ,  i __ ~  (jkJ 

We will study the effect of previous transformations of the curvature 
tensors of  LF(N) .  In this respect, denoting with a diacritic "o" the geometri- 
cal objects determined by the d-connection LF(N) ,  we can prove the follow- 
ing result. 

by 

Proposition 6.1. The d-connection L ~ ( N )  has the torsions 

~  - -  ' ~  ' ~  ~  _ _  T j k - S ) k = 0 ,  Rjk=ro)k P jk-O , Cjk, (6.2) 

Proposition 6.2. The curvatures of  the d-connection Lf ' (N)  are given 

o i - -  is ~ i __ 
Rj k~, - g rjskh, Pj ~h - - ~jhlk 

S/kh=la ( i-u2)g"[(rJkr~h- TJhrs~)- ~ (rj~Jhu- rjku)] 
where I is the h-covariant derivative with respect to L~'(N). 

(6.3) 
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For nondispersive media ~ '  the v-curvature tensor ~/kh has a very 
simple form, 

S/kh : 1 (1 - u 2 ) g i S ( T j k  ~/ sh - -  ~ ' jh ~/ sk) 
a 

Proposi t ion 6.3. The deflection tensors D/j and d~ of the d-connection 
L~(N) satisfy the equations 

= - u  ) y y j  (6.4) 
a 

Proposi t ion 6.4. The h- and v-electromagnetic tensors/~0 and ~j of the 
d-connection L ~ ' ( N )  vanish. 

Now we can prove an important result: 

I . 

Theorem 6.1. The tensors of deformation A~.k, Cjk have the forms, 
respectively, 

i _ _ L  i s  
Ajk -- 2g ( gysTk + gskIg -- gjkTs) 

1 . 1 i s  Cjk = ~g (gjslk +gsk~-gj~I~) (6.5) 

where T and I mean the h- and v-covariant derivatives with respect to LI~(N), 
respectively. 

P r o o f  From (4.2') and (2.4'), taking into account 

giA = - 2uyiyj6ku, g•lk = - 2uyiyj~ku (6.6) 

we get (6.5). [] 

The torsions and curvatures of the canonical metrical d-connections 
LF(N)  can be computed by using the transformation of d-connections (6.1). 

Proposi t ion 6.5. The torsions of LF(N)  are 

T~k=S~k=0,  i , i i i R j k - r o j ~ ,  Cjk, Pjk = -A)k (6.7) 

Proposi t ion 6.6. The curvature tensors of the canonical metrical d-con- 
nection LF(N)  are given by 

i - -  i i 

Rj  kh-- Rj  kh + Pj kh 

i i i Pj kh = Pj kh + rcj kh (6.8) 
i - -  i 

Sj kt, - Ss ~h + a s %  
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1 1 1 s i i s i - -  i s i 
~)kh-- -- CjhTk + Aijklh + A}kCsh - C}hA~s + Ajs~kh (6.9) 

1 i 1 . o  1 1 .  1 1 .  
l S l a S f -~l  % %  = C~.L-  

Evidently, for nondispersive media ~ we have the following result. 

�9 Proposition 6. 7. If J/g is a nondispersive medium, the curvature tensors 
of LF(N) are given by (6.8), in which 

P/kh = Aj~Ih - A~hl, + A;kA~h - A}hA~ 
(6.10) 

rc/~h = A~kl~ + A~]~h ,  o'jG = 0 

7. EINSTEIN EQUATIONS OF M m 

The Einstein equations of the generalized Lagrange space M m endowed 
with the canonical metrical d-connection LF(N) (Miron, 1985; Miron and 
Anastasiei, 1987; Miron et al., 1991), restricted to a section S v ( N ) ,  give us 
the Einstein equations of a medium J//endowed with the Synge metric (1.9). 

The following theorem is known (Miron and Anastasiei, 1987; Miron 
et al., 1991). 

Theorem 7.1. The Einstein equations of the generalized Lagrange space 
M "  endowed with the canonical metrical d-connection LF(N) are given by 

H 1 1 
1 R U-  ~Rg~= ~cT~j, P~= ~cT~ 

V 2 2 

so . -  ~Sgu = ,cTo., Pu = - ,r 
(7.1) 

where ~ is a constant and 

1 

Rq - Ri j s  , S i j  -~- S . S  t j s ,  

2 

Pa = PiS~J, R = g~R a, S = g~S U 

(7.2) 

H 

Theorem 7.2. The divergences of the h- and v-energy-momentum T~ 
V 

and T~i are given by 

�9 2 V 
H t __  I ih r i r " T~li- - ~_(P jrR h,+ 2P rR ij), T'yII=0 (7.3) 
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Corollary 7.1. If  the Riemannian space V m is locally flat, then the 
following laws of conservation hold" 

H .  V .  

T~l~ = 0, T)]~ = 0 (7.4) 

Corollary 7.2. If the generalized Lagrange space jlo~-m has the property 
i - -  Ps ki,-0, then the laws of conservation (7.4) are satisfied. 

Now we can express the Einstein tensors 

H 1 V 1 

Eu= R o - 2 Rgo , Eu= S ~ - ~ Sg o. (7.5) 

by means of the Ricci tensors of the d-connection LF(N).  We have 

where 

1 1 

2 2 
Su = Su + cr~j, Po = P~ + tru 

(7.6) 

Also we shall put 

~ 0 " -  (Yi js  

I 2 
]7~ij= ~ i S s  ~ ]'Cij -~- ~iSs j  

P i j =  ~  _ ~  Pi j~, P u -  Pi sj 

(7.7) 

p = gUpo, cr = g~cr o. (7.8) 

Now we can formulate the following theorem. 

Theorem 7.3. The Einstein equations of the generalized Lagrange space 
M'" endowed with the canonical metrical d-connection LF(N)  are given by 

R i j  + p i j  - 1 H 1 1 
~ ( R + p ) g u = ~ T  ~, Po.+~o.=KTu 

(7.9) 
I V 2 2 

S u + c r u -  ~(S+cr)gij=tcTo ., Po.+ rci j=-tcTu 

The equations (7.9) give the change of the Einstein equations of the 
connection L~ ' (N)  = ({j~}, o i C)k) with respect to the transformation of the 
connection (6.1). 

Now it is easy to describe the equations (7.9) by making use of (6.3), 
(6.8), and (6.9). 

Also we can give particulars of all these equations in the case of a 
nondispersive medium. 
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We note also the following theorems. 

Theorem 7.4. The h-paths of the canonical metrical d-connection 
LF(N) are given by the system of differential equations 

d2x i f i t dxj dxg dxJ dx~ 

dt--~+ ~ - aj~---- jkJ dt dt dt dt 

Theorem 7.5. The v-paths of the canonical metrical d-connection 
LF(N) at a point xoeM are characterized by 

d2y i 1 dy y dy k - I, d S dy k 
dt 2 + a(xo, y) yjk(Xo)/ dt dt Cjk(Xo, y) d~ dtt- 

8. A L M O S T  H E R M I T I A N  M O D E L  OF T H E  S P A C E  M = 

All the previous constructions have a good meaning on the so-called 
almost Hermitian model (Miron and Anastasiei, 1987). 

We consider the generalized Lagrange space M m = (M, g~(x, y)), where 
the fundamental tensor go{x, y) is given by (1.5). Taking into account the 
nonlinear connection N with the coefficients (3.1), as well as the fact that it 
determines a subbundle HTM of the tangent bundle TTM, we have the 
Whitney sum: TTM = H T M O  VTM, where VTM is the vertical subbundle 
of TTM. 

In every point ~e TM we have the fiber N~ of HTM and the fiber V~ of 
VTM. The tangent space T~TM is the direct sum of the vector spaces N~ 
and V~. Then the mappings 

N: ~-~N~, V: ~--* V~ 

are two supplementary distributions of TM called horizontal and vertical, 
respectively. 

We consider the local adapted basis (5 /Sx  i, 0 / 8 / ) =  (&, 8i) to these 
two distributions N and V. This is a local basis of the module of the vector 
fields f ( T M ) .  The natural almost complex structure 

F: ~Y(TM)--, f ( T M )  

can be given on the local generators of f ( T M )  by 

P((~i):-~i, F(8,) = & (i=1 . . . . .  m) (8.1) 

Proposition 8.1. The almost complex structure F is integrable if and 
only if the Riemann space V m is fiat. 
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The dual basis of (&, Je) is (dx t, 5y), where 

5yi=dj + I Zl tyJ dxk (8.2) 
l j k )  

Now we can consider the N-lift of the fundamental tensor go: 

( 1  
go(x, y) = ),o(x) + 1 2 --YiYJ (8.3) 

n (x, y ) /  

that is, 

G = go(x, y) dx*| j + go(x, y) 5yi| 5yJ (8.4) 

Obviously, G is a symmetric, nondegenerate, covariant of order two 
tensor field, globally defined on the manifold TM. 

Theorem 8.1. The pair (G, g) in (8.1), (8.2) is an almost Hermitian 
structure on TM. 

Indeed, it is easy to prove that 

G(FX, FY)=G(X, Y), VX, Y~Y(TM) 

Therefore, the space H 2m= (TM, G, F) is called the almost Hermitian 
model of the generalized Lagrange space M m. 

Assuming that on M there is a nonvanishing vector field V~(x), x~M, 
and taking into account the cross section Sv(M) given by (1.8), we can take 
the restriction to Sv(M) of the space H >'. This restriction gives us "the 
almost Hermitian model of the dispersive medium Jr Of course, the metric 
of J / / i s  the Synge metric (1.9). 

Let us consider the 2-form of H 2m" 

O(X, Y)=G(FX, Y), VX, Y ~ f ( T M )  (8.5) 

We have the following result. 

Proposition 8.2: 

1. 0 is an almost symplectic structure on T-M. 
2. In the adapted basis (&, 0i), 0 is expressed by 

0 =go(x, y) ~yi/~ dx i 

When 0 is a closed 2-form, H 2m is an almost K~ihlerian space. 

(8.5') 
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We shall compute the exterior differential o f  the 2-form 0. To this aim, 
we note that the exterior differential of the 1-form fiyi is given by 

d( c~y i) = - �89 R% dx j A dx ~ - ~ dx J/x fiyk 
ay 

Then we obtain the exterior differential of the 2-form 0: 

dO = - ~ girR~k dx i A dx j A dx k 
Uk 
[ r r + ~ ( - g u P  j~ + gjrP it) dx i/x dx j/x fiyk 

I r r + ~(g#Cki--&rCkj) 8y ~/X fiyJ A dx k 

A straightforward calculation leads to 

dO= ilYllZY~Ejdxi AdxJ A a Y K +  (1 - - u 2 ) ( y k i Y j  - YkjYi)  

l ] 
ily[12 yk~; fiyi A fiy; /xdx k (8.6) 

We examine the case dO = 0. It implies 

ykFo.=O 

i 1 (8.7) _~( 1 -/,/2)(yi~Yj_ yjkyi) - ]~y][2 ykfij =0 

However, this system of equations is equivalent to 

F0=0, f,j=0 
(8.8) 

~ / i k Y j - -  ~ / j k Y i  ~ -  0 

The equations (8.8) give a contradiction. 
Consequently, we have the following theorem. 

Theorem 8.2, The almost Hermitian model H 2m of  the generalized Lag- 
range space M m, endowed with the fundamental field (8.3), is not an almost 
K/ihlerian space. 

This theorem is significant. It follows that we cannot apply the methods 
of symplectic geometry (Libermann and Marie, 1987) in order to study 
dispersive media ~ '  endowed with the Synge metric (1.9). 
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Now we can prove the following theorems: 

Theorem 8.3. There is a unique linear connection V on TM having the 
properties: 

1. V preserves by parallelism the vertical distribution V. 
2. V is an almost Hermitian connection: 

VxG=0, VxF=0, VXe~(T '~)  

3. The h- and v-torsions of V vanish. 

The connection V from the previous theorem is called canonical for the 
almost Hermitian model H 2m of the generalized Lagrange space M".  

Theorem 8.4. In the adapted basis (~ii, ~i) the canonical connection V 
of the Hermitian model H 2" is determined by the coefficients (Lj,, C j-k) in 
(6.1) of the canonical metrical d-connection LF(N) of the generalized Lag- 
range space M m. 

Theorem 8.5. The Einstein equations of the canonical connection of the 
almost Hermitian model H 2m a re  equivalent to the Einstein equations (7.9) 
of the generalized Lagrange space m m endowed with the canonical metrical 
d-connection LF(N). 

9. CONCLUSIONS 

We have studied the geometrical properties of a dispersive medium Jg 
with a refractive index n(x, V(x)) endowed with the Synge metric (I) from 
relativistic geometrical optics. In particular, we have paid attention to the 
case when n(x, V(x)) does not depend on the velocity V(x) of the particles 
x of the considered medium J//. This is the nondispersive case. 

We introduce the h- and v-electromagnetic tensors Fo(x, y) andre(x, y). 
They are derived only from the metric of the medium. 

In the case of the nondispersive medium ~l  the v-electromagnetic tensor 
f j(x,  y) vanishes and all our considerations become simple. 

These two tensors F o. and f~j satisfy the remarkable Maxwell equa- 
tions (5.4). 

The Einstein equations (7.9) for the dispersive medium appear now for 
the first time; however, their expressions are rather complicated. 

A good simplification is given for a nondispersive medium. It is impor- 
tant to note that the equations (7.9) can be explicitly written by considering 
the deformation (6.1) of the d-connections L['(N) and LF(N). 

The laws of conservation for the energy-momentum tensors have also 
been studied. 
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There are a number of potential physical applications of this theory. 
We also studied in the preceding section, the Hermitian model H 2m of 

the dispersive medium J/{ and proved that H 2m is not reduced to an almost 
K~ihlerian space. This result is significant, because the associated almost 
symplectic structure 0 of H 2m cannot be a symplectic structure. Conse- 
quently, the geometrical properties from relativistic optics based on the Synge 
metric (I) cannot be studied by means of symplectic geometry as in theoretical 
mechanics. This was already recognized by Synge (1966, p. 311). 

In this respect, Ingarden (1987) made a very interesting remark: "Sym- 
plectic geometry is a geometry of mechanical phase space showing the sense 
of the canonical transformations of positions and momenta. However in 
mechanics without momenta there exist also potentials in the field theory 
of potential fields. Therefore we do not need the symplectic geometry but 
geometry of potentials and that is namely a metric geometry." Here we 
have confirmed these statements. 
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