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Relativistic Geometrical Optics

Radu Miron' and Tomoaki Kawaguchi®
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We investigate the gravitational and electromagnetic fields on the generalized
Lagrange space endowed with the metric g;(x, ) = y;(x)+ {1+ 1/0°(x, y)}yw;.
The generalized Lagrange spaces M™ do not reduce to Lagrange spaces. Conse-
quently, they cannot be studied by methods of symplectic geometry. The restric-
tion of the spaces M™ to a section S,(M ) leads to the Maxwell equations and
Einstein equations for the electromagnetic and gravitational fields in dispersive
media with the refractive index n(x, V') endowed with the Synge metric. When
a(x, V)=1 we have the classical Einstein equations. If 1/m*=1-1/¢ (¢ being
the light velocity), we get results given previously by the authors. The present
paper is a detailed version of a work in preparation.

INTRODUCTION

In two recent papers (Kawaguchi and Miron, 1989a,b), we studied some
geometrical models for gravitation and electromagnetism considering the
generalized Lagrange spaces M = (M, g,(x, »)) in which M is an m-dimen-
sional manifold and g;(x, y) is the metric tensor

1 .
g%, y)=vi(x) + 2V = yi(x)y’ (a)

y' is the Liouville vector field on the total space TM of the tangent bundle
(TM, n, M), and y;(x) is a Riemannian metric on M.

Assuming that on M there exists a C*-vector field V'(x), xe M, we can
consider the cross section Sy: M — TM of the projection n: TM — M, given
by

X=x,  y=Viix), xeM (i=1,...,m)
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Then the restriction of the metric (a) to the cross section Sy (M) leads
to the metric

1
gil(x, V(x))=yy(x) +; Viv; (a")

The metric was studied by Beil (1987, 1989) and used in some problems
from electrodynamics. It is related to a new class of Finsler metric (Beil,
1989).

Therefore, our works (Kawaguchi and Miron, 19894,b; Miron and
Kawaguchi, 1991a.,b) give geometrical models for gravitational and electro-
magnetic fields based on the metric (a).

R. G. Beil (private communication, October 1989) has pointed out the
more general metric 4

1
n’(x, y)

where n(x, V(x)), xe M, is the index of refraction of the medium.

The metric (a’) appears as a particular case of the metric (b): 1/n°=
1—1/c>. This metric is discussed extensively by Synge (1968, pp. 376, 384),
where its application to the propagation of electromagnetic waves in a
medium with the index of refraction » is established.

Remarking that the metric (b) is the restriction to the cross section
S{M) of the d-tensor field

gi(x, V(x))=7y,(x) + (1 - ) Viv; (b)

1
gi{x, y)=yiy(x)+ (1 - m)ym D

we will study in the present paper the generalized Lagrange space M=
(M, gi(x, y)) with the fundamental tensor (I) (which explains the title of
this paper).

We prove that M™ is not reduced to a Finslerian or a Lagrangian space
(Miron and Anastasiei, 1987). It is a generalized Lagrange space, a notation
studied by Miron (1985) and extensively presented in Miron and Anastasiei
(1987). The generalized Lagrange spaces were also studied by Aringazin and
Asanov (1985), Asanov (1985), Aikou and Hashiguchi (1984), Anastasiei
(1981), Atanasiu (1984), Hashiguchi (1984), Ichiyo (1988), Izumi (1987),
Kawaguchi and Miron (19894,b), Kikuchi (1988), Klepp (1982), Opris
(1980), Rund (1982), Sakaguchi (1988), and Watanabe et al. (1983).

In the following we study the generalized Lagrange spaces M ™ with the
metric (I), we find the canonical nonlinear connection determined by the
metric g;(x, y), and we prove Synge’s theorem (Theorem 3.1). Then we
determine the canonical metrical d-connection of M, and its curvatures and
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torsions. The /- and v-electromagnetic tensors F; and f; are determined by
means of the deflection tensors of the space. Theorem 5.2 gives us the
Maxwell equations for F; and f;. For the nondispersive media (in which dr/
0y'=0), the v-electromagnetic tensor f;(x, y) vanishes and we have a simpler
form (5.8) for the Maxwell equations.

If we consider the canonical metrical d-connection LT'(N)= (L, Ck)
as the deformation (6.1) of the d-connection LI'(N) =({ 4}, Cix), we can
express the geometrical objects of LI'(N) as functions of the corresponding
geometrical objects of LI'(V). This idea allows us to give the explicit Einstein
equations of the generalized Lagrange spaces endowed with the metric (I)
(Section 7). Finally, in Section 8, we display the almost Hermitian model
H?" of the generalized Lagrange space M”, which shows that the methods
of symplectic geometry used in the theoretical mechanics cannot be applied
for the study of the geometrical theory of the generalized Lagrange spaces
M"™ endowed with the metric (of the Synge type) (I).

The restriction of this theory to the cross section S){M) gives us a
theory of gravitation and electromagnetism for dispersive media with refrac-
tive index n(x, ¥(x)) endowed with the Synge metric (b). When n(x, V(x))=
1 we have the classical Einstein equations and when 1/#*=1—1/¢* we have
the theory of gravitation and electromagnetism for spaces with the Beil
metric (a’) (Kawaguchi and Miron, 1989a,b).

1. THE SYNGE METRIC

Let M be a (C™ —m)-dimensional real manifold (in particular m=4),
7: TM — M the tangent bundle of M, and (', y") (i,j. k,...=1,...,m)
the local coordinates on the total space TM. A transformation of coordinates
(x, ¥) = (%, y) has the form

=200 x, rank ||—|| =m
ox’
) 1.1
Lo (1.1)
y 6xjy

Suppose that y,{(x), xe M, is a pseudo-Riemannian metric on the base
manifold M. Then for a point #e TM, with n(@) = x, y,(n(i)) gives us a d-
tensor field on TM, symmetric, covariant of order two, and of rank m.

Also, y' 0/0x" is a vector field on TM, called the Liouville vector field.
Therefore

Yi=vyx)y’ (1.2)
is a d-covector field on TM.
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We denote

Iyl 2=y x)p'y’ (1.3)

and consider the differentiable manifold 7A =TM\{0}, where {0} is the
null section of the projection 7: TM — M.

Consequently, |[y] >#0 on TM.

Assume that there is given a positive function n(x, y) on TM and we
take

1
u(x, y)=——- (1.4)
n(x, y)
The function n(x, y) is called the refractive index.
We denote

1 2 [
a(x, y)=1+11-— Il (1.4)

n(x,y)

Now we consider
gy(x, ) =1y(x) + [1 =’ (x, )y, (L5)
We have the following result.

Theorem 1.1. The following properties hold:

1. gi{x,») is a d-tensor field on TM, covariant of order two, and
symmetric.

2. rank||gy(x, y)| =m

Proof. The first part of the theorem is immediate. For the second part,
let us consider the d-tensor field

) o o
g(x, »)=7"(x) —-(- u*)y'y’ (1.6)

It is easy to check that
gy(x, J/)gjk(xa Y):5ik (L.7)
and the theorem is proved. W

Obviously, the refractive index n(x, y) enters in the expression of the d-
tensor field g;(x, y).

Corollary 1.1. The pair M= (M, gy(x, y)) is a generalized Lagrange

space.
gi(x,y) is called the fundamental tensor or metric tensor of the gen-

eralized Lagrange space M"™.
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Corollary 1.2:

1. n(x, y)=1 implies that M™ coincides with the Riemannian space
V= (M, 74(x)).

2. 1/n*=1-1/c* implies that gy(x,y) is reduced to the metric
Yi(X)+ (1/S)y ;.

Remark. The metric from the Corollary 1.2, part 2 is considered in
Kawaguchi and Miron (19884,h) and Miron and Kawaguchi (1991a,b) and
was suggested by the Beil metric (a). We apply in the study of the generalized
Lagrange spaces M™ endowed with the metric (1.5) the same methods used
in the above papers.

We assume that on the manifold M there is a C* nonnull vector field
V'(x), xe M. In this case, we have the following result.

Proposition 1.1. The mapping Sv: M — TM, given by
xX=x, y=Vi(x), xeM (i=1,...,m) (1.8)

is a cross section of the projection 7: TM — M.

Therefore S){M) is an immersed submanifold in 7M. It is called the
section S M).

The restriction to the section Sy{M) of the fundamental tensor
gi(x, gi#(x, y)) of the generalized Lagrange space M™ is the tensor field
gi(x, V(x)) given by

ST P
n(x, V(x))
Vi(x)=7yi(x)V(x)

gi(x, V(x))=yy(x) + (1
(1.9)

This is just the metric given by Synge (1966) and used in the study of the
propagation of electromagnetic waves in a medium with index of refraction
n(x, V(x)), V'(x) being the velocity field of the medium.

Definition 1.1. The medium 4 =[M, V(x), n(x, V(x))] is called a dis-
persive medium.
If 0n/dy'=0, then .# is called a nondispersive medium.

Definition 1.2. The restriction of the generalized Lagrange space M” to
the section S,(M) is called the geometrical model of the dispersive medium
4 endowed with the Synge metric (1.9).

For this reason the geometrical theory of the generalized Lagrange
space M"™ is considered by us as the relativistic geometrical optics of the
medium .#. Therefore, we study geometrical properties of the space M”
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and consider the restriction to the section Sy (M) in order to obtain the
geometrical properties of the medium ..

2. v-CANONICAL METRICAL d-CONNECTION

The vertical part of a d-connection, metrical with respect to the tensor
metric g;(x, y), is given by the d-tensor field

Ci= 28" (Bgm— O gn—Ongi) 2.1

where we set J;=0/0)".
By means of (1.5) we have

Oegy= (1 =) (yay;+ viy:) = 2ubiuyy;] (2.2)
Then, putting
él'jk =(1- uz) YikVis lek = gih Co}hk
| . . . (2.3)
Cij =—u( yiyjaku + ))jykaiu - yky,@ju)

we get the following result.

Theorem 2.1. The v-canonical metrical d-connection Ci(x, y) is given
by

X o . |
= Cic+ Cli (2.4)
where
i 1 2 i ! i ih ! ’
C,-k=;(1—u uy's  Cu=g"Cm (2.4)
Proof. A straightforward calculation leads to
° 1
gth7k = Cijk + Cijk
However, we have
1 _
g”yj=;y . g =ay (2.5)

Then (2.4) and (2.4) hold. W

Proposition 2.1. The medium # is nondiépersive if and only if the d-
1.
tensor field Cj; vanishes.



Relativistic Geometrical Optics 1527

The vertical part Cj, of a d-connection allows us to consider the v-
covariant derivative of the d-tensor fields. For example, in the case of the d-
tensor field K(x, y) the v-covariant derivative is

Klp= 8K+ CLK— ChKL
As an application we note
gw=0, ¥l %%=2y
j\i i ] \h i (26)
Yik=d=0i+y Ch

Here d'; is the v-deflection tensor of the generalized Lagrange
space M™.
Also we get

al=2[(1 =)y —uly | *duu] (2.6"

Definition 2.1. The generalized Lagrange space M™ is called reducible
to a Lagrange space if there exists a function L: TM — R, of the class C*
on TM, continuous on the null section, such that

&L
ayi ayl

1 *
gix, y) =5 ™

It is interesting to note the following result.

Theorem 2.2. The generalized Lagrange space M™ with the metric (1.5)
and n(x, y) #1 is not reduced to a Lagrange space.

Proof. Let us suppose that there exists a Lagrangian L: TM — R which
is a solution of the equation with partial derivatives (*). It follows that
the d-tensor field (3'kgij from (2.2) is totally symmetric. But the equations
k&~ 0igiy =0 Imply

(A=) (Y wyi— Vive) = 2up yidest — yibar) =0

Contracting by y-", we obtain y,dw— ybu=0 and viyi— Vive=0. A new
contraction by y in the last equation gives (m—1)y;=0 or y;=0 on TM.
This is a contradiction. H

3. THE NONLINEAR CONNECTION DETERMINED BY g;

The fundamental tensor field g,(x, y) from (1.5) of the generalized Lag-
range space M "™ is well determined by the pseudo-Riemannian metric y,(x)
and the refractive index n(x, y). Therefore we can assume the following:
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Postulate. The functions

i) il
el 2h

are the coefficients of the canonical nonlinear connection of the generalized
Lagrange space M ™.

Of course {} are the Christoffel symbols of the metric y,(x). The
arguments which support this postulate are:

1. The horizontal geodesics of the nonlinear connection N with the
coefficients (3.1) are given by
a’*x i | dx! dx*
_;+{ : }_x_ ', (32)
dt jk) dt dt
2. We have the following very interesting result of Synge (1966).

Theorem 3.1. (J. L. Synge). For a nondispersive medium the extremals
of the integral of action on a curve c: [0, 1] - M,

1
dx .
I(c)= J é"(x, Z) dt,  E(x,y)=gy(x, y)yy’ (3.3)
0
which have the property
dx\ dx' dx’
alx, — | — —=0 34
g’<x dz) dt dt (34

are the geodesics of the pseudo-Riemannian space V"= (M, y,(x)).
Proof. The extremals of I{c) are given by the Euler-Lagrange equations

ﬁ(gf)_@_@=0’ y"=€l£ (3.5)
dt\oy’/ ox' dt

But, in the hypothesis (3.4) and by dn/3y =0 the system of equations
(3.5) leads to (3.2). W

3. In the case 1/n*=1—1/c’ the canonical nonlinear connection N
(Kawaguchi and Miron, 1989a,b) of M™ is just (3.1).
Now we put

) J
R T 69)
6x ox

We have (8., ;) a local basis of the module of vector fields ' (TM ) adapted
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to the horizontal distribution N determined by the nonlinear connection
(3.1) and to the vertical distribution ¥ on TM.

Proposition 3.1. The Berwald connection determined by the nonlinear
connection (3.1) has the coefficients BT = ({ i}1*, { i}, 0).

Proposition 3.2. The horizontal curves ¢: I« R— TM are characterized
by the differential equations

x'=x1), dl+{ l}yjfi—f—=0, tel
a Lkl de

Proposition 3.3. The horizontal distribution N determined by the non-
linear connection (3.1) is integrable if and only if the Riemannian manifold
V™ is flat.

4, THE CANONICAL METRICAL d-CONNECTION

Now we can determine the horizontal part of the canonical metrical d-
connection, which depends only on the fundamental tensor field g;(x, y)
from (1.5). So we have some general results:

Theorem 4.1 (R. Miron). There exists a unique d-connection
LT =(N';, Ly, Cj) for which:

1. N';is given by (3.1).
2, g,—,~|k=0, g,~j|k=0.. ]
3. The torsions 7”4 and S’y of LT vanish.

Theorem 4.2. The d-connection LI" which has the properties 1-3 from
the last theorem has the coefficients N';, Cj given by (3.1), (2.4), and (2.4')
and Lj, given by the “generalized Christoffel symbols™:

= 38"(8,8m+ Srgn— S1ngix) 4.1)

Clearly, the d-connection LT has the coefficients N';, D, and C con-
structed from the fundamental tensor g;(x, y) alone. For this reason it is
called the canonical metrical d-connection of the generalized Lagrange space
M. We denote also LI by LT(N)=(Lj, Ck), N being given by (3.1).

The coefficients Li(x, y) from (4.1) give the horizontal part (h-part)
of LT(N).
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Proposition 4.1. The coefficients of the A-part of the canonical metrical
d-connection LI'(N) are symmetric and can be put in the following form:

, i R
jk
where

Aje=—ug"(yuy 0+ yuyiBu = y;YiSst) (4.2

Proposition 4.2. For a nondispersive medium .# the d-tensor field Ajk
vanishes if and only if the refractive index n(x) is constant.

Proof. The d-tensor A}k vanishes if and only if Su=0du=0. Then
n(x) =const and conversely.

The h-part of the canonical metrical d-connection LI'(V) allows one
to construct an A-covariant derivative (Miron and Anastasiei, 1987). For
example, in the case of a d-tensor field Kj(x, y) we have the A-covariant
derivative with respect to LI'(N):

Kh=08,Ki+ L,Ki—LyK: W

Proposition 4.3. The Ricci identities for a d-tensor field Ki(x, y) with
respect to the canonical metrical d-connection LI'(N) are given by

i i _pspi ips _ g ps
K= Kpn = KGR e — KGRy i — KR e

Kl = Kilun= K x'Psihk —KiP = K} Cia— KJsP e (4.3)
Klale = KJlln = K8 we— K3S) e
where
=8N =8N, Pu=0N'— Ly (4.4)

are the torsions and
Ry =84Liy— 83Lix+ Ly Ly — Lix Lty + CjR i
P/u=Lijs— Chn+C ,-,P k (4.5)
S/ = 0Cljp— 84Clx+ CiCri— CiCly
are the curvatures of LI'(N).
Applying the Ricci identities to the fundamental tensor g;(x, y) from

(1.5), taking into account g =0 and g;x=0, and denoting as usual
Rijwi = g»Ri nk, etc., we have the following result.



Relativistic Geometrical Optics 1531

Proposition 4.4. The curvature tensors of the canonical metrical d-con-
nection LI'(NV) have the properties

R+ Rjie =0, P+ Pjine =0

(4.6)
Sijhk + Sjihk =0
Let us consider the hA-deflection tensor field
Dij=yiU (47)

By means of A- and v-deflection tensors D; and d'; we can consider their
covariant forms Dj; and dj; given by D;=g,D’; and d;=g,d’;.

Applying the Ricci identities to the Liouville vector field ', we have the
following result.

Proposition 4.5. The h- and v-covariant deflection tensors D and dj; of
the canonical metrical d-connection LI'(N) satisfy the equations

Dijlk - Dikl Ihe R()iijrjk
Dyl ~ die;;=Poy.— Dy C i~ d P (4.8)
dijlk — dy| iT Soljk

where by the index “0” we denote the contraction by ', i.e., Roje =y Ry,
etc.

5. ELECTROMAGNETIC TENSORS

In the case when the medium .# is nondispersive we find an electromag-
netic tensor field given by the skew-symmetric part of the s-covariant deflec-
tion tensor Dj;. In this case the skew-symmetric part of the v-covariant
deflection tensor dy vanishes.

Generally, when the considered medium .# is dispersive two electro-
magnetic tensors appear in the generalized Lagrange space M ™.

Definition 5.1. We call the &- and v-electromagnetic tensor fields of the
generalized Lagrange space M™ the d-tensors

respectively.
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We have the following result.

Theorem 5.1. The h- and v-electromagnetic tensors of the space M™
have the form

Fy=u|y| 2()’j5i14 —yidu)

" . (5.2)
Ji=ulyl “(y0m—yiou)
Proof. The formulas
Di=Ly=N'=Ay,  Dy=giAy (5.3)
d'y=0;+ Cy, dy=gy+ 8 Cly (5.3)

lead to (5.2). W

Corollary 5.1. If # is a nondispersive medium, then the v-electromag-
netic tensors field f;(x, y) vanishes.

These two electromagnetic tensors Fy(x, y) and fy(x, y) are related by
fundamental equations given by the following theorem.

Theorem 5.2. The h- and v-electromagnetic tensors Fi(x, y) and fy(x, y)
satisfy the Maxwell equations

Fpe+ Fogi+ Fy j% ek (Rog — dy R 1)
i)

File + Fuli+ Fid j= = (e + S+ i) 5.4
Sile +fuli T 1 ;=0

Proof. The first of equations (5.4) is obtained from equations (4.8) by
a cyclic permutation of the indices i, j, k¥ and summing up. The second of
equations (5.4) is a consequence of the last equality (4.8), taking into account
one of the Bianchi identities satisfied by the canonical metrical d-connection
LT(N): G Sy =0. Now, by means of the relations Cjx=Cj; and P’y =
P'); the second of equations (4.8) gives
(Fyle+ Fuli+ Frdl ;) + (e + firi + fears)

=% S (POijk_POjik)

ik
However, we have another Bianchi identity (Miron and Anastasiei, 1987):
Pl u— P y=Pryli— P i+ PPy C = P Cly
which lead to Sy (Poj — Poj) =0. Therefore relations (5.4) hold. W

It is convenient to give a new form to the second member of the first
of equations (5.4).
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Lemma 5.1. The canonical metrical d-connection LI'(N) satisfies the
identity

% (ROijk - dirRrjk) = 61( [(CiOr + dir)Rrjk] (5-5)
b i

Proof. The Bianchi identity from LI'(N),

S Rihjk =G Ciherk

ijk ijk
gives

ik

S ROijk = 6k CiOrRrjk
i

such that (5.5) is satisfied.
Denoting by r/u(x) the curvature tensor of the Levi-Civita con-

nection {4},
i i i s{)i{ _Js()i
r”“—a"{jh} a”{jk}+{1h}{sk} {jk}{sh} 66

we have the following result.
Lemma 5.2. The equality
Rh,-j:roh,-j (57)

holds.
Indeed, (4.4) and (3.1) imply (5.7).

Corollary 5.2. The first of equations (5.4) is equivalent to

Fiie+ Fyyi+ Fray=—3 ek [(Ciost+dis)ro” ] (5.4)
i

Now we can prove an important result:

Theorem 5.3. If the medium .# is nondispersive, then the Maxwell
equations of the generalized Lagrange space M™ have the form

Fyy+ Fi+ Fig; =0

(3.8)
Filx+ Fyli+ Fio; =0
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Proof. For the nondispersive medium .# the v-electromagnetic tensor
field f(x, y) vanishes. Then the Maxwell equations (5.4), (5.4) give
& Fype=—13 & [(Cus+di)ro’s]
ijk ijk

1
=—= [ays S rap+2(1— uz)y”y" ) y,-rquk:,= 0
2 ik ik

and

SFL=0 M

ifk
Remarks. There exist other particularly interesting cases:

1. The Riemannian space V" is flat.
2. The generalized Lagrange space M "™ is a Jocally Minkowski space.

6. REMARKABLE TRANSFORMATION OF CONNECTIONS

The direct study of the canonical metrical d-connection LI'(N) is very
difficult. Considering LT(N) as a deformation of the d-connection

. o . 1.
LE(N)= ({4}, C&), with the tensors of deformation (Aj, Ck), we have the
transformation of d-connections LI'(N) — LT(N) given by

| i . , o 1,
= {jk}‘f'/\}k, we=Chu+ Ch 6.1

We will study the effect of previous transformations of the curvature

652

tensors of LI'(NV). In this respect, denoting with a diacritic “-” the geometri-
cal objects determined by the d-connection LI'(N), we can prove the follow-
ing result.

Proposition 6.1. The d-connection LI"(N) has the torsions
T’)k=§'}k=0, I%ijkzroijka é}k, ﬁijk=0 (6.2)

Proposition 6.2. The curvatures of the d-connection LT(N) are given
by

S s S i
Rjkh_g Fiskch » Plrn= éthk

(6.3)
S i 1 . 2\ iy 2” 3 3
S ke = (F—u)g"” | (V¥ sn— V¥ sk) T (7 xOntt = ¥ juOxtt)

where | is the s-covariant derivative with respect to LI(N).
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For nondispersive media .# the v-curvature tensor S, has a very
simple form,

& i 1 is
S kn = (A=) (VY sn— VinY s2)

Proposition 6.3. The deflection tensors I'; and d’j of the d-connection
LI(N) satisfy the equations

o o, 1 .
D=0, d=8+-(1—-u)y, (6.4)
a

Proposition 6.4. The h- and v-electromagnetic tensors F,, and f},- of the
d-connection LI'(N) vanish.
Now we can prove an important result:

X 1.
Theorem 6.1. The tensors of deformation Aj, Cj have the forms,
respectively,

o= 18" (e T gokly — &)
L . (6.5)
le'k = %gls(gjsTk + gskT; - g,-kTs)

where [ and T mean the 4- and v-covariant derivatives with respect to Lf"(N ),
respectively.
Proof. From (4.2) and (2.4'), taking into account
gie=—2upy S, gile=—2uyybu (6.6)
we get (6.5). W

The torsions and curvatures of the canonical metrical d-connections
LT'(N) can be computed by using the transformation of d-connections (6.1).

Proposition 6.5. The torsions of LT'(N) are
k=8"%=0, Ru=ro'sn, Cie, Pl=—Aix 6.7)

Proposition 6.6. The curvature tensors of the canonical metrical d-con-
nection LI'(N) are given by

R/w= R/t pien
Pliy= P+l ©(6.8)

P i i
Sien=Siknt 0} en
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where we put
pjikh = Aj‘kTh - Aj‘hfk + Aj’kAih - A;hA.l;‘k
i L i s i e ai i s
Toen=— Che+ Al + A Chy— CoAi+ AiCin (6.9)
i ) i ! i ! s ! i ! s ) i
&/an=Ciln— Ciahe + C5:Cin— CisCla
Evidently, for nondispersive media .# we have the following result.
" Proposition 6.7. If .4 is a nondispersive medium, the curvature tensors
of LT'(N) are given by (6.8), in which
0en = N — A+ MeAin — AN ix

i i i s i (6.10)
o= N+ AsCi, /=0

7. EINSTEIN EQUATIONS OF M™

The Einstein equations of the generalized Lagrange space M ™ endowed
with the canonical metrical d-connection LI'(N) (Miron, 1985; Miron and
Anastasiei, 1987; Miron et al., 1991), restricted to a section Sp{N), give us
the Einstein equations of 2 medium .# endowed with the Synge metric (1.9).

The following theorem is known (Miron and Anastasiei, 1987; Miron
et al., 1991).

Theorem 7.1. The Einstein equations of the generalized Lagrange space
M"™ endowed with the canonical metrical d-connection LI'(N) are given by

i ! !
R;—3Rgy=«xTy, Py=xTy

| V , , (7.1)
Sy—28gy=xTy,  Py=—xkIy

where « is a constant and

1
R;=R/}s, Sy=587s; Py=P/

i J i J 4 J (7.2)
2 - "
P,'j=P,'S5j, R=gUR,'j, SSgUS,j

H
Theorem 7.2. The divergences of the A- and v-energy-momentum 7Ty

|4
and T are given by

a4, L pin pr Li pr i
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Corollary 7.1. If the Riemannian space V" is locally flat, then the
following laws of conservation hold:
H i | 4 i
j|i=0, le,':O (74)
Corollary 7.2, 1f the generalized Lagrange space M ™ has the property
P,1,=0, then the laws of conservation (7.4) are satisfied.
Now we can express the Einstein tensors
H 1 4 1
E;=Ry—iRgy,  E;=8;—25g; (7.5)
by means of the Ricci tensors of the d~connection LI'(N). We have

o 1 1
Rij':Rij+Pz'17 PU=PU+7TU

(7.6)
. 2 2
where
Pij=PiSj:> C;=0js
1 2
Ry=TMijs,  Rg=Tiy (1.7
Pij:ﬁisj:’ Pij=pissj
Also we shall put
p=g'p;, o=g"0, (7.8)

Now we can formulate the following theorem.

Theorem 7.3. The Einstein equations of the generalized Lagrange space
M™ endowed with the canonical metrical d-connection LI'(N) are given by

o 1 H 1 L
R+ py—3(R+p)g;= Ty, Pi+my=xTy 79)

° V 2 2

The equations (7.9) give the change of the Einstein equations of the
connection LI'(N)=({4}, Ck) with respect to the transformation of the
connection (6.1).

Now it is easy to describe the equations (7.9) by making use of (6.3),
(6.8), and (6.9).

Also we can give particulars of all these equations in the case of a
nondispersive medium,
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We note also the following theorems.

Theorem 7.4. The h-paths of the canonical metrical d-connection
LT'(N) are given by the system of differential equations

d*x { i}dxj dx* Al dx’ dx
dt dt dt dz

PRY B
Theorem 7.5. The v-paths of the canonical metrical d-connection
LT(N) at a point xoe M are characterized by
d_Z—y_i N 1 dy’ dyf dy’ dy

—_— *~=—Cl s
i ate ) PO oY wlXos )

8. ALMOST HERMITIAN MODEL OF THE SPACE M™

All the previous constructions have a good meaning on the so-called
almost Hermitian model (Miron and Anastasiei, 1987).

We consider the generalized Lagrange space M" = (M, g,(x, y)), where
the fundamental tensor g,(x, y) is given by (1.5). Taking into account the
nonlinear connection N with the coefficients (3.1), as well as the fact that it
determines a subbundle HTM of the tangent bundle T7TM, we have the
Whitney sum: 7TM = HTM @ VTM, where VTM is the vertical subbundle
of TTM.

In every point sie TM we have the fiber N; of HTM and the fiber V; of
VTM. The tangent space T,TM is the direct sum of the vector spaces N
and V. Then the mappings

N: a~N; Vi -V,

are two supplementary distributions of TM called horizontal and vertical,
respectively.

We consider the local adapted basis (8/6x',8/8y") = (6, ;) to these
two distributions N and V. This is a local basis of the module of the vector
fields & (TM). The natural almost complex structure

F: &(TM)->%Z(TM)
can be given on the local generators of Z(TM) by
F(6)=—4d,, F@)=¢6  (i=1,....m) (8.1)

Proposition 8.1. The almost complex structure F is integrable if and
only if the Riemann space V™ is flat.
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The dual basis of (8;, &;) is (dx’, 8y), where
5yi=dyi+{ ! } ¥ dk (8.2)
Jjk
Now we can consider the N-lift of the fundamental tensor g;:

1
gi(x, y) = yy(x) + <1 —T_)Yiyj (8.3)
n(x,y)

that is,
G=gy(x,y) dxX'Q@gx’'+gy(x, y) 6y’ ®5y’ (8.4)

Obviously, G is a symmetric, nondegenerfl‘tg, covariant of order two
tensor field, globally defined on the manifold TM.

Theorem 8.1. The pair (G, F) in (8.1), (8.2) is an almost Hermitian
structure on TM.
Indeed, it is easy to prove that

GFX,FY)=G(X,Y), VX, YeZ(TM)

Therefore, the space H*"=(TM, G, F) is called the almost Hermitian
model of the generalized Lagrange space M™.

Assuming that on M there is a nonvanishing vector field V'(x), xe M,
and taking into account the cross section Sy (M) given by (1.8), we can take
the restriction to Sy/{M) of the space H*". This restriction gives us “the
almost Hermitian model of the dispersive medium .#.” Of course, the metric
of .# is the Synge metric (1.9).

Let us consider the 2-form of H>":

0(X, Y)=G(FX, ), VX, YeZ(TM) (8.5)
We have the following result.
Proposition 8.2:

1. @ is an almost symplectic structure on T™.
2. In the adapted basis (J;, d;), 0 is expressed by

O=g,(x,y) 8y ndx’ (8.5)

When 6 is a closed 2-form, H>” is an almost Kéhlerian space.
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We shall compute the exterior differential of the 2-form 6. To this aim,

we note that the exterior differential of the 1-form 8y’ is given by

d(6y") =~ 3Ry dx’ A dxk—aa— dx’ A 8y*
¥

Then we obtain the exterior differential of the 2-form 8:

d0=— G g, R dx' Adx’ ndx*

ifk

+ i(—ggP "t &P i) dax' ndx? A 5yk

+ %(gjrclrci-gircli;j) Sy A 8y AdxF

A straightforward calculation leads to

1
d9 2 ykE_] dx A dx N 5 YK [ (1 - uz)(}/kiyj_ ykjyl)

|| szkf,,} 8y’ A 8y’ A dxX

We examine the case d6=0. It implies

yiFy=0

(L= ay;— yays) — o sz;(f,,

However, this system of equations is equivalent to
F','j = 0, f;'j =()
Yay;— ¥uyi=0

The equations (8.8) give a contradiction.
Consequently, we have the following theorem.

(8.6)

(8.7)

(8.8)

Theorem 8.2. The almost Hermitian model H > of the generalized Lag-
range space M", endowed with the fundamental field (8.3), is not an almost

Kéihlerian space.

This theorem is significant. It follows that we cannot apply the methods
of symplectic geometry (Libermann and Marle, 1987) in order to study

dispersive media .# endowed with the Synge metric (1.9).
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Now we can prove the following theorems:

Theorem 8.3. There is a unique linear connection V on TM having the
properties:

1. V preserves by parallelism the vertical distribution V.
2. V is an almost Hermitian connection:

ViG=0, VyxF=0, VXeZ(TM)
3. The h- and v-torsions of V vanish.

The connection V from the previous theorem is called canonical for the
almost Hermitian model H>” of the generalized Lagrange space M.

Theorem 8.4. In the adapted basis (8;, ") the canonical connection V
of the Hermitian model H>” is determined by the coefficients (Lj, Ck) in
(6.1) of the canonical metrical d-connection LI'(N) of the generalized Lag-
range space M.

Theorem 8.5. The Einstein equations of the canonical connection of the
almost Hermitian model H>" are equivalent to the Einstein equations (7.9)
of the generalized Lagrange space M™ endowed with the canonical metrical
d-connection LI'(N).

9. CONCLUSIONS

We have studied the geometrical properties of a dispersive medium .#
with a refractive index n(x, V(x)) endowed with the Synge metric (I) from
relativistic geometrical optics. In particular, we have paid attention to the
case when n(x, V(x)) does not depend on the velocity V(x) of the particles
x of the considered medium .#. This is the nondispersive case.

We introduce the /- and v-electromagnetic tensors Fy(x, y) and f;(x, y).
They are derived only from the metric of the medium.

In the case of the nondispersive medium .4 the v-electromagnetic tensor
Ji(x, y) vanishes and all our considerations become simple.

These two tensors Fj; and f; satisfy the remarkable Maxwell equa-
tions (5.4).

The Einstein equations (7.9) for the dispersive medium appear now for
the first time; however, their expressions are rather complicated.

A good simplification is given for a nondispersive medium. It is impor-
tant to note that the equations (7.9) can be explicitly written by considering
the deformation (6.1) of the d-connections LI'(N) and LT(N).

The laws of conservation for the energy-momentum tensors have also
been studied.
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There are a number of potential physical applications of this theory.

We also studied in the preceding section, the Hermitian model H*" of
the dispersive medium .# and proved that H>" is not reduced to an almost
Kéhlerian space. This result is significant, because the associated almost
symplectic structure @ of H*” cannot be a symplectic structure. Conse-
quently, the geometrical properties from relativistic optics based on the Synge
metric (1) cannot be studied by means of symplectic geometry as in theoretical
mechanics. This was already recognized by Synge (1966, p. 311).

In this respect, Ingarden (1987) made a very interesting remark : “Sym-
plectic geometry is a geometry of mechanical phase space showing the sense
of the canonical transformations of positions and momenta. However in
mechanics without momenta there exist also potentials in the field theory
of potential fields. Therefore we do not need the symplectic geometry but
geometry of potentials and that is namely a metric geometry.” Here we
have confirmed these statements.
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